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INTRODUCTION 

The Galaxiidae, a family of Southern 
Hemisphere fishes containing seven genera 
and approximately 65 species (Eschmeyer & 
Fong, 2015), are small (< 25 cm), elongate 
fishes, restricted to Australia’s Mediterra-
nean and cool-mild temperate climatic 
zones, New Caledonia, New Zealand, South 
Africa and South America (Raadik, 2014). 
Australia has the greatest diversity of gal-
axiids (McDowall & Frankenberg, 1981) and 
boasts five genera and 37 species (Raadik, 
2014; Coleman et al., 2015) that are re-
stricted to the Mediterranean climatic and 
cooler temperate regions of south-western 
and south-eastern Australia, including 
Tasmania. Of the five members of the Gal-
axiidae found in Western Australia’s Medi-
terranean climatic zone (which includes in-
land waters within the Southwestern Prov-
ince and the southern Pilbara Province (see 
Morgan et al., 2014)), three are endemic to 
the Southwestern Province; Galaxias occi-
dentalis Ogilby 1899, Galaxiella munda 
McDowall 1978 and Galaxiella nigrostriata 
(Shipway 1953) (Allen et al., 2002). The 
Southwestern Province has exceptional en-
demicity, with over 80% of all freshwater 
fishes being unique to the region, and fur-
ther contains a number of endemic cryptic 
species awaiting description (Morgan et al., 
2014). An additional two galaxiids, which 
also occur in south-eastern Australia, are 
Galaxias maculatus (Jenyns 1842), the most 
naturally widespread freshwater fish in the 
Southern Hemisphere (Berra, 1981), and 
Galaxias truttaceus Valenciennes 1846. 
These two galaxiids have populations that 
may be diadromous or landlocked (Hum-
phries, 1989; Morgan et al., 2016).  

Although a number of other galaxiids 
are diadromous, including most populations 
of G. truttaceus in south-eastern Australia 
(McDowall & Frankenberg, 1981; Hum-
phries, 1989), populations of G. truttaceus in 

the Mediterranean Southwestern Province 
of Australia are landlocked and potamo-
dromous (Morgan, 2003; Morgan et al., 
2005, 2016). Unlike most freshwater fishes 
in this climatic zone, which spawn during 
the winter and spring when the majority of 
precipitation occurs and stream flows peak 
(Pen & Potter, 1990, 1991), the latter popu-
lations of G. truttaceus migrate upstream 
within rivers to spawn in mid-late autumn 
(Morgan, 2003). The early stages then use 
downstream lacustrine environments as a 
nursery before migrating back into the river 
systems as juveniles (Morgan, 2003; Morgan 
& Beatty, 2006; Close et al., 2014). 

Although migratory fishes are a con-
spicuous component of coastal riverine fish 
communities of Australia, biological 
knowledge of early life history stages of 
most species remains largely undocumented 
(Miles et al., 2014). In many cases, this has 
hampered conservation management and 
consequently many of Australia’s diadro-
mous and potamodromous species are under 
increasing threat from a range of environ-
mental impacts (Miles et al., 2014). Ecologi-
cal studies of early life history stages of fish 
require accurate species discrimination. 
Larval descriptions are available for only 
five of the 37 Australian members of the 
Galaxiidae including Galaxias olidus Gün-
ther 1866 (Close, 1995), G. maculatus (Ben-
zie, 1968; Chapman et al., 2009), Galaxias 
occidentalis, Galaxiella munda and Galaxi-
ella nigrostriata (Gill & Neira, 1994). In 
addition to those galaxiid species listed 
above that occur in Western Australia’s 
Mediterranean climatic zone, larval descrip-
tions are also available to discriminate oth-
er species of the region including Nan-
natherina balstoni Regan 1906 (Gill & Mor-
gan, 1998), Lepidogalaxias salamandroides 
Mees 1961 (Gill & Morgan, 1999), 
Pseudogobius olorum (Sauvage 1880) (Neira 
et al., 1998) and Afurcagobius suppositus 
(Sauvage 1880) (Neira et al., 1998). A devel-
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opmental series of the critically endangered 
G. truttaceus have not been described and 
this hampers those ecological studies that 
require the larvae of sympatric galaxiids to 
be differentiated. 

The ontogenetic changes in gross 
morphology, pigmentation, fin folds and fins 
of wild-caught G. truttaceus are described 
between post-hatch and juvenile life stage. 
Preliminary information on ontogenetic 
shifts in diet is also presented. The con-
struction of a novel developmental series of 
larvae will allow for diagnostic characters to 
be identified for application to future re-
search in field-collected samples and pro-
vide a basis for further ecological study. 

 

METHODS 

Fish collection 

Larvae of G. truttaceus were collect-
ed from the Moates Lake drainage system, 
situated 30 km east of Albany on the south-
ern coast of Western Australia (Figure 1). 
The catchment is drained by two small (< 15 
m wide) tributaries; the perennial Goodga 
River (16 km2) and Black Cat Creek (4 km2). 
Specimens were collected opportunistically 
between May and July 1999 using a fine 
mesh (250 µm) sweep net, a conical plank-
ton net (80 cm diameter, 500 µm mesh) and 
a small seine net (3 mm mesh nets, 5 m 
length, 1.5 m depth). Additional specimens 
of early-preflexion stage G. truttaceus, col-
lected from the Goodga River between 2013 
and 2015 using conical drift nets (500 µm; 
0.5 m diameter), were also examined to 
identify the length at hatching. All these 
latter specimens had enlarged yolk-sacs and 
were presumed to be immediately post-
hatch. All specimens retained for larval de-
scription and dietary analysis were eu-
thanised by anesthetic overdose, fixed in 
10% buffered formaldehyde and later pre-
served in 100% ETOH. 

 

Identification of larvae and juveniles  

Larvae were identified as belonging 
to the Galaxiidae by their elongate body (> 
50 myomeres; body depth (BD) ~ 6-12% 
body length (BL), a long gut (~ 70-85% BL) 
and presence of a single posteriorly placed 
dorsal fin (Gill & Neira, 1994, 1998). With 
the exception of G. maculatus, all other 
sympatric species spawn during winter-
spring after the distinct April-May spawn-
ing period of G. truttaceus (Pen & Potter, 
1990, 1991; Morgan et al., 1995; Morgan, 
2003) and thus only larvae of G. truttaceus 
and G. maculatus were expected at the time 
collections were made, although G. macula-
tus has protracted spawning period with 
larvae present in the Moates Lake system 
year round (Chapman et al., 2006).  Larval 
stages of G. truttaceus were distinguished 
from all other sympatric species using a 
developmental series (sensu Leis & Rennis, 
1983) from a positively identified juvenile to 
the smallest collected larva using compari-
sons of general morphology, number of my-
omeres, morphometrics, pigment patterns, 
and fin development and meristics, availa-
ble in previous larval description of sympat-
ric species of the Galaxiidae (Gill & Neira, 
1994; Chapman, 2003), Perchythyidae (Gill 
& Morgan, 1998), Gobiidae (Neira et al., 
1998). 

 

Larval descriptions  

Developmental changes in gross 
morphology, dorsal and ventral unpaired 
medial fin folds, fins and pigmentation were 
documented through preflexion, flexion and 
postflexion (pre-squamation) stages of larval 
development (Leis & Trnski, 1989).  In addi-
tion, a transitional stage was included to 
represent fish that had attained adult fin 
meristics, but not coloration nor gross mor-
phology (i.e. broadening of the head and 
body) typical of juvenile and adult life stag-
es (Allen et al., 2002; Morgan et al., 2011).  
For the purposes of this study, individuals 
with adult meristics, morphology and color-
ation were considered juveniles (~ 34 mm 
total length (TL) for G. truttaceus). 
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PLATE 1. (Top) The critically endangered Spotted Galaxias (Galaxias truttaceus) (pho-
tograph: Mark Allen) from the Mediterranean climatic zone of Australia’s Southwestern Prov-
ince; (middle) the larval nursery habitat in Moates Lake with the Southern Ocean in the dis-
tance following a bushfire in 2012 (photograph: Stephen Beatty): (bottom) the western side of 
Moates Lake and the meandering entrance to the Goodga River (photograph: Stephen Beatty). 
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The commencement of formation of 
the caudal (C), dorsal (D) and anal (A) fins 
corresponds to the first appearance of anla-
gen, the pectoral fin (P) to the first appear-
ance of incipient fin rays and the ventral 
(pelvic) fin (V) to the first appearance of fin 
buds (Neira et al., 1998).  Measurements 
and counts of myomeres and rays of the 
paired fins were made on the left side of the 
body.  Pigment refers to melanin. 

Illustrations were prepared with the aid of a 
camera lucida. Care was taken to ensure 
that specimens used for measurements and 
illustrations were not unduly distorted. 
Those specimens illustrated were chosen on 
the basis of having morphometric and me-
ristic characteristics typical of the develop-
mental stage. Given that some individual 
variation in development exists, differences 
between the level of development of individ-
ual fish and that for the entire sample for 
each stage do occur. 

 

Material examined 

Galaxias truttaceus larval descriptions: 16, 
6.9-10.9 mm total length (TL), Moates Lake 
Western Australia, D. Morgan; 20, 16.4-20.9 
mm TL, Moates Lake Western Australia, D. 
Morgan; 18, 17.1-22.7 mm TL, Moates Lake 
Western Australia, D. Morgan; 24, 27.7-34.1 
mm TL, Moates Lake/Goodga River Western 
Australia, D. Morgan; 10, 31.2-38.7 mm TL, 
Goodga River Western Australia, D. Mor-
gan; 15, 11-100 mm TL, Moates 
Lake/Goodga River Western Australia, D. 
Morgan, cleared and stained. All collected 
between 25/5/99-23/7/99. Additional 20, 5.3-
8.7 mm BL, Goodga River Western Austral-
ia, 2013-2015, P. Close and J. Berkelaar. 

 

Dietary analysis 

All specimens used for dietary analysis were 
measured for length and categorised by de-
velopmental stage as described above. 
Stomachs were removed and their contents 
examined under a dissecting microscope. 
For larval stage specimens that lacked a 
distinct stomach, the anterior portion of the 
intestinal tract was removed for analysis.  

For all specimens examined, each prey item 
was identified to the lowest possible taxon 
and allocated to broad taxonomic groups 
and ‘fish eggs’. All terrestrial fauna (i.e. spi-
ders, ants and winged insects) were grouped 
together as they are predominantly found 
on the water surface and indicate surface 
feeding (Gill & Morgan, 2003). 

Stomach content of each specimen was de-
scribed in terms of i) the percentage fre-
quency of occurrence of each ingested prey 
type (%F), and ii) relative contribution by 
volume (%V) of each prey type to total 
stomach content (Hynes 1950). For deter-
mination of %V, the fullness of each stom-
ach was estimated and assigned a value 
between zero (empty) and 10 (fully distend-
ed stomach). The percentage contribution of 
each item to the total stomach volume was 
then estimated (see Hyslop, 1980; Schafer et 
al., 2002; Gill & Morgan, 2003). Individuals 
with empty stomachs or completely uniden-
tifiable stomach contents were removed 
from subsequent analysis. 

 

RESULTS 

Size range of developmental stages 

A total of 98 wild caught specimens of G. 
truttaceus including larval, transitional and 
juvenile stages of development were used to 
describe ontogenetic changes in morphology, 
meristics and pigmentation (Table 1).  Six-
teen preflexion larvae collected during 1999 
were examined and ranged in BL from 6.9 
to 10.9 mm (Table 1). Additionally, early-
preflexion stage larvae, collected between 
2013 and 2015, indicated length at hatching 
was 5.3 mm BL. Twenty flexion stage larvae 
were examined and ranged in BL from 16.4 
to 21.9 mm. Based on the degree of noto-
chord flexion, all flexion stage larvae exam-
ined were considered to be mid-late stage 
flexion and thus the BL for larvae at early 
stages of notochord flexion are likely to be 
considerably less than that reported here 
(i.e. < 16.4 mm BL).  The range in BL for 
postflexion stage larvae (n=18) and ‘transi-
tional’ stage specimens (n=24) was 17.1-22.7 
mm and 27.7-34.1 mm, respectively.  The 
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smallest juvenile specimen examined was 
31.2 mm BL. 

 

Gross morphology  

Larvae are very elongate in body plan 
throughout larval development (Figure 2) 
with a total myomere count between 54 and 
59.  Mean PAL is between 71 and 88% BL 
throughout larval, transitional and juvenile 
stages and mean BD increases from 3.7% 
BL in preflexion larvae to 13% BL in juve-
nile stages (Table 1). The anus is located 
below myomeres 40 to 42 in all stages.  All 
other body proportions increased progres-

sively in size from preflexion larvae through 
to juveniles (Table 1). The smallest larva 
collected was 5.3 mm BL (2015 sample).  
Preflexion larvae had a functional mouth 
(MW = 2.3% BL; ML = 1.7% BL) with small 
caniniform teeth in both upper and lower 
jaws (prominent by late-flexion), well devel-
oped eyes (ED =2.5% BL), a yolk sac (Figure 
2) and a small, anteriorly-located gas blad-
der (not shown in Figure 2).  In preflexion 
larvae, the gut is simple and straight. A 
distinct anterior stomach develops during 
flexion.  Adult gut morphology was apparent 
in the smallest juvenile examined (31.2 mm 
BL). 

 

TABLE 1. Range (mean + 1 SE) of body length* and proportions of larval, transi-
tional and juvenile stage Galaxias truttaceus**. All measures are in mm. 

Measurement Preflexion 

(n=16) 

Flexion 

(n=20) 

Postflexion 

(n=18) 

Transitional 

(n=24) 

Juvenile 

(n=10) 

Body length 
6.9 – 10.9 

(8.6 + 0.3) 

16.4 – 21.9 

(18.8 + 0.3) 

17.1 – 22.7 

(20.6 + 0.6) 

27.7 – 34.1 

(30.8 + 0.4) 

31.2 – 38.7 

(35.1 + 0.6) 

Body depth 
2.6 – 5.0 

(3.7 + 0.3) 

4.9 – 6.8 

(5.8 + 0.1) 

5.5 – 8.2 

(7.1 + 0.2) 

8.2 – 10.9 

(9.4 + 0.1) 

11.9 – 13.9 

(13.2 + 0.2) 

Head length 
6.0 – 7.6 

(6.9 + 0.1) 

11.9 – 15.7 

(14.0 + 0.2) 

12.6 – 18.2 

(14.6 + 0.4) 

16.1 – 19.9 

(18.4 + 0.2) 

19.5 – 24.3 

(22.2 + 0.5) 

Head depth 
4.2 – 6.0 

(5.0 + 0.2) 

4.6 – 8.5 

(7.2 + 0.2) 

6.7 – 11.1 

(8.5 + 0.2) 

8.1 – 10.7 

(9.0 + 0.1) 

11.1 – 12.7 

(12.2 + 0.2) 

Snout length 
0.9 – 1.7 

(1.2 + 0.1) 

1.7 – 4.3 

(3.1 + 0.1) 

2.5 – 4.6 

(3.4 + 0.1) 

3.5 – 5.3 

(4.5 + 0.1) 

4.5 – 5.9 

(5.2 + 0.2) 

Mouth width 
2.3 – 3.4 

(2.8 + 0.1) 

4.12 – 5.7 

(4.7 + 0.1) 

4.6 – 6.5 

(5.2 + 0.14) 

4.3 – 5.6 

(4.7 + 0.1) 

6.7 – 8.0 

(7.2 + 0.1) 

Mouth length 
1.7 – 3.1 

(2.4 + 0.1) 

3.2 – 5.4 

(4.3 + 0.1) 

3.8 – 6.4 

(5.1 + 0.2) 

4.7 – 6.5 

(5.5 + 0.1) 

7.4 – 8.3 

(7.6 + 0.2) 

Preanal 
length 

71.6 – 87.5 

(75.6 + 1.0) 

71.0 – 83.6 

(80.4 + 0.8) 

76.1 – 86.2 

(80.5 + 0.7) 

69.3 – 78.2 

(74.4 + 0.5) 

71.6 – 78.2 

(75.5 + 0.8) 

Eye diameter 
2.5 – 3.2 

(2.9 + 0.1) 

3.8 – 4.7 

(4.3 + 0.1) 

4.3 – 5.3 

(5.1 + 0.2) 

4.7 – 6.0 

(5.1 + 0.1) 

5.5 – 6.4 

(6.0 + 0.1) 
*, NB some variation in body proportions of preflexion-flexion and postflexion-juvenile stages attributable to 
change in body length measurements; BL measured as notochord length for preflexion and flexion stages, and as 
total length for postflexion, transitional and juvenile stages; 

**, Data do not include additional early-preflexion specimens collected between 2013 and 2015. 
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Development of fins 

The start and completion of fin development 
in G. truttaceus follows the pattern: C; D; A 
 P  V.  In preflexion larvae a dorsal me-
dial fin fold extends distally from approxi-
mately myosepta 5-8, around the notochord, 
then ventro-proximally to myosepta 7-12.  
Rays of caudal, dorsal and anal fins are de-
veloping by 16.4 mm BL (flexion stage).  As 
all examined flexion stage larvae were con-
sidered to be mid-late stage, the BL at 
which anlagen for these fins first appears is 
unknown. Pterygiophores and associated fin 
rays of the dorsal and anal fin are visible by 
~ 17 mm BL.  Adult meristics for caudal (C 
16-17), dorsal (D 8-12) and anal (A 11-14) 
are present by 22 mm BL after notochord 
flexion is complete.  Pectoral fin buds are 
present at hatching (not shown Fig. 2).  Pec-
toral fin rays were visible in all flexion stage 
larvae (i.e. > 16.4 mm BL) with adult meris-
tics (P 7-13) present by approximately 27 
mm BL.  Ventral fin rays appear by 27 mm 
BL and develop sequentially from dorsal to 
ventral with adult meristics (V 5-8) present 
in juvenile specimens greater than 31 mm 
TL.  

 

Pigmentation 

Pigmentation is typically sparse in preflex-
ion larvae and becomes more prominent 
during ‘transitional’ and juvenile life stages 
(Figure 2).  External pigmentation in pre-
flexion larvae is confined to a paired row of 
stellate melanophores on either side of ven-
tral midline (17-24 melanophores) and a 
single row on the dorsal mid-line (4-33; gen-
erally >16).  Stellate melanophores are also 
present on the ventral midline at, or just 
posterior to, the anal vent (0-4) and along 
the ventral midline of the caudal peduncle 
(0-6; generally >2).  The head and nape are 
largely unpigmented during preflexion, alt-
hough a few (up to five) large stellate mel-
anophores may be present in some speci-

mens. Approximately 50% of examined spec-
imens possessed a single, internal stellate 
melanophore within the otic capsule.  Be-
tween 5 and 11 stellate melanophores are 
present on the lateral and ventral surface of 
yolk sac.  During flexion, melanophores on 
the head increase in size and number, and a 
line of irregularly spaced melanophores de-
velops along the lateral line. Pigment along 
the dorsal and ventral midlines remains 
largely unchanged. This pigment becomes 
more dense (melanophores coalesced) in the 
region surrounding anlagen of the dorsal 
and anal fin (Figure 2).  In postflexion and 
transitional stages, stellate and punctate 
melanophores become more numerous and 
develop on either side of the lateral line, and 
on and around the pectoral base, operculum 
and jaw.  Adult pigmentation is present in 
juveniles at approximately 45 mm BL; heav-
ily pigmented with overall brownish red 
coloration, dark circular pigment spots sur-
rounded by silvery white halos dorso-
laterally, fins orange-reddish in colour. 

 

Diet 

Over half of all fish examined contained 
prey in their gut. For those with prey, all 
postflexion and transitional stage G. trut-
taceus contained dipteran larvae, which con-
tributed ~ 98% to stomach content volume 
(Table 2). One fish also consumed ostracods.  
Early juvenile stages (i.e. 35-49 mm BL), 
consumed eight distinct dietary categories 
(Table 2), although terrestrial fauna strong-
ly dominated both in terms of their contri-
bution to stomach volume (81%) and fre-
quency of occurrence in individual fish 
(89%).  Of the aquatic diet, amphipods con-
tributed most (10%) to stomach volume and 
amphipods, dipteran larvae and fish eggs 
contributed most (> 10% each) to frequency 
of occurrence. 
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FIGURE 2. Stages in the development of early life history of Galaxias truttaceus 
between post-hatch and juvenile life stage (illustrations by Fiona Rowland).  Devel-
opmental stages are defined by Neira et al. (1998) as: Yolk-sac - presence of a yolk 
sac ventrally in the gut region; Preflexion - the stage between complete absorption 
of the yolk and the start of upward bending of the notochord; Flexion - the stage 
from the commencement of notochord flexion to the time when the hypural plates  
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FIGURE 2 (CONTINUED). assume a vertical position; Postflexion – the stage be-
tween completion of notochord flexion and the transition to juvenile morphology; 
Transitional–the period of metamorphosis of morphological features from those of 
the larval stage to those typical of the juvenile stage and where the ventral pig-
mentation distinguishes it from all other sympatric species; Juvenile – the stage 
from attainment of the full complement of external meristic characters (fin rays 
and scales) to first sexual maturity. 

 

TABLE 2. Percentage volumetric contribution (%V) and percentage occurrence 
(%F) (in parentheses) of prey items to the stomach contents of postflexion and 
‘transitional’ stage larvae and juveniles of Galaxias truttaceus. 

Prey type 

Postflexion and ‘transitional’ 

(20-34 mm BL; n = 7) 

Juvenile 

(35-49 mm BL; n = 28) 

Ostracoda 1.8 (14.3) 1.1 (7.1) 

Amphipoda - 10.6 (14.3) 

Collembola - 0.8 (3.6) 

Diptera larvae 98.2 (100) 1.2 (14.3) 

Trichoptera larvae - 0.4 (3.6) 

Coleoptera larvae - 1.9 (3.6) 

Terrestrial fauna - 81.3 (89.3) 

Fish eggs - 2.4 (10.7) 

Mean gut fullness (± SE) 3.1 (0.3) 2.8 (0.4) 

 

 

DISCUSSION 

Mediterranean climatic populations of G. 
truttaceus on the west coast of Australia 
exhibit morphological differences to popula-
tions on the opposite side of continental 
Australia (McDowall & Frankenberg, 1981) 
and sub-structure at nuclear and matriline-
al genetic markers suggest discrete western 
and eastern Australian sub-populations 
with limited contemporary gene flow (Mor-
gan et al., 2016). Many eastern Australian 
populations are diadromous, whereas all 
populations on Australia’s south-west coast 
are potamodromous and landlocked (Hum-
phries, 1989; Morgan, 2003, Morgan et al., 
2016). Morphological features, such as a 

reduced number of fin rays and vertebrae in 
land-locked populations compared to diad-
romous populations may have evolved as a 
response to the need to have a greater 
swimming ability in environments with 
higher flow. The following discussion of the 
key diagnostic characters that distinguish 
G. truttaceus from other species is restricted 
to those sympatric species within the West-
ern Australian distribution.  In Western 
Australia, the species is known from only 
three catchments located on the south coast 
(Morgan, 2003; Colman, 2010; Close et al., 
2014; Morgan et al., 2016) and occurs sym-
patrically with teleost fishes belonging to 
the Galaxiidae, the Percichthyidae and the 
Gobiidae (Morgan et al., 1998; 2011).  
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While larval G. truttaceus and G. maculatus 
are sympatric, all other species with which 
these co-occur as adults spawn during win-
ter-spring (June- November), after the dis-
tinct April-May spawning period of G. trut-
taceus (Morgan, 2003) and thus only larvae 
of G. truttaceus and G. maculatus can be 
expected in samples collected in autumn – 
early winter. Additionally, both these galax-
iid species (as well as G. occidentalis) pos-
sess in excess of 50 myomeres, whereas all 
other sympatric species possess less myo-
meres; Gobiidae, 24-34 (Neira et al., 1998), 
Perchythyidae, 31-35 (e.g. N. balstoni, Gill 
& Morgan, (1998)) and Galaxiella species, 
38-44 (Gill & Neira, 1994; Neira et al., 1998) 
and tend to be more heavily pigmented with 
melanophores (see Gill & Neira, 1994; Gill 
& Morgan, 1998; Neira et al., 1998). 

Galaxias maculatus is known to undertake 
protracted spawning with larvae present in 
coastal lakes year-round (Chapman et al., 
2006).  Larvae and juveniles of G. macula-
tus and G. truttaceus are sympatric in the 
Moates Lake drainage system, and probably 
in coastal lakes associated with the two oth-
er rivers in which these species co-occur as 
adults. Taxonomic discrimination between 
these two species is possible using pigment 
patterns: G. truttaceus possesses paired 
stellate melanophores on the ventral mid-
line, not present in G. maculatus; G. macu-
latus has a single line of melanophores on 
the upper lateral surface of the gut, not pre-
sent in G. truttaceus (Chapman et al., 2009).  
Larger larvae and juveniles of G. truttaceus 
can be distinguished by anterior origin of 
dorsal fin, which is proximal to that of the 
anal fin in G. truttaceus and adjacent or 
behind the anal fin in G. maculatus.  Com-
pared to G. maculatus, late-larval stages of 
G. truttaceus are more heavily pigmented, 
particularly on the latero-dorsal surface, by 
larger stellate and punctate melanophores 
(c.f. Chapman et al., 2009).  While G. occi-
dentalis spawns later (June-September) 
than G. truttaceus, early-larval stages of 
these species can be distinguished by pig-
ment (2-29 melanophores) along the dorsal 
and ventral midlines of the caudal peduncle; 
a characteristic diagnostic for G. occidental-
is (Neira et al., 1998) and lacking in larval 

G. truttaceus.  Galaxias occidentalis also 
possess melanophores along the isthmus 
and around the cleithral symphysis during 
larval stages (Neira et al., 1998) not present 
in G. truttaceus.  In flexion larvae, coalesced 
melanophores are located on the ventral and 
dorsal midline around anlagen of the dorsal 
and anal fins in G. truttaceus but not G. 
occidentalis (c.f. Neira et al., 1998).  Larger 
larvae and juveniles of G. truttaceus can be 
distinguished by the anterior origin of dor-
sal fin, which is proximal to that of the anal 
fin in G. truttaceus and adjacent to the anal 
fin in G. occidentalis.  

Previous examination of the diet of Western 
Australian populations of G. truttaceus 
identified that preflexion stages consumed 
exclusively copepods and that terrestrial 
prey, of which 98% was insect, dominated 
(65-96%) the diet of adult fish (Morgan, 
2003).  We identified that dipteran larvae 
dominated the diet during postflexion larval 
stages and that the dominance of terrestrial 
prey starts as early as the juvenile stage.  
This dramatic ontogenetic shift in diet coin-
cides with a distinct shift from lentic to lotic 
habitats that occurs when juvenile fish un-
dertake an upstream recruitment migration 
to adult riverine habitat (Morgan & Beatty, 
2006; Close et al., 2014), but may also be 
related to seasonality of prey availability, 
noting that Morgan (2003) found terrestrial 
fauna (insects) in the stomachs to be lowest 
in winter (65%) and spring (76%). 

Similar ontogenetic shifts in diet have been 
described for other freshwater fishes of 
Mediterranean south-western Australia.  
Nannatherina balstoni also preys on small 
aquatic fauna (predominantly cladocerans, 
ostracods, copepods and dipteran larvae) 
during larval stages, after which terrestrial 
fauna contribute increasingly to the diets 
during juvenile and adult life stages (Gill & 
Morgan, 1998).  Gill and Morgan (2003) 
found a similar shift in diet for larval G. 
nigrostriata and L. salamandroides from 
cladocerans, copepods, ostracods and dip-
terans during larval stages to terrestrial 
fauna and larger benthic prey in juvenile 
stages.  The pronounced shift from small 
aquatic prey to terrestrial prey items in 
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both studies was thought to be related to 
ontogeny, rather than seasonality in prey 
abundance.   

This study has provided the first detailed 
morphological description of larvae of the 
critically endangered G. truttaceus.  Key 
diagnostic characters that distinguish Aus-
tralian populations of G. truttaceus from 
other sympatric Galaxias species include 
the distribution and density of pigmentation 
and the position of the dorsal fin origin rela-
tive to that of the anal fin.  Larvae of G. 
truttaceus may be easily distinguished from 
other sympatric species belonging to Gobi-
idae, Perchythyidae and Galaxiella that 
have significantly fewer myomeres and/or 
are less elongate and tend to be more heavi-
ly pigmented with melanophores.  Accurate 
discrimination of G. truttaceus from other 
sympatric species provides a basis for fur-
ther ecological investigations on the ecology 
of early life history stages of this species in 
Mediterranean Western Australia.  Because 
G. truttaceus exhibits morphological differ-
ences among populations in western and 
eastern Australia, the transferability of the 
key diagnostic features described here to 
eastern Australian populations remains 
unknown. 
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